Coloring Eulerian triangulations of the projective plane

نویسنده

  • Bojan Mohar
چکیده

A simple characterization of the 3, 4, or 5-colorable Eulerian triangulations of the projective plane is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polychromatic 4-coloring of cubic even embeddings on the projective plane

A polychromatic k-coloring of a map G on a surface is a k-coloring such that each face of G has all k colors on its boundary vertices. An even embedding G on a surface is a map of a simple graph on the surface such that each face of G is bounded by a cycle of even length. In this paper, we shall prove that a cubic even embedding G on the projective plane has a polychromatic proper 4-coloring if...

متن کامل

A new proof of 3-colorability of Eulerian triangulations

Using the existence of noncrossing Eulerian circuits in Eulerian plane graphs, we give a short constructive proof of the theorem of Heawood that Eulerian triangulations are 3-colorable.

متن کامل

Quadrangulations and 5-critical Graphs on the Projective Plane

Let Q be a nonbipartite quadrangulation of the projective plane. Youngs [13] proved that Q cannot be 3-colored. We prove that for every 4-coloring of Q and for any two colors a and b, the number of faces F of Q, on which all four colors appear and colors a and b are not adjacent on F , is odd. This strengthens previous results that have appeared in [13, 6, 8, 1]. If we form a triangulation of t...

متن کامل

5-Chromatic even triangulations on surfaces

A triangulation is said to be even if each vertex has even degree. It is known that every even triangulation on any orientable surface with sufficiently large representativity is 4-colorable [J. Hutchinson, B. Richter, P. Seymour, Colouring Eulerian triangulations, J. Combin. Theory, Ser. B 84 (2002) 225–239], but all graphs on any surface with large representativity are 5-colorable [C. Thomass...

متن کامل

Coloring Eulerian Triangulations of the Klein Bottle

We show that an Eulerian triangulation of the Klein bottle has chromatic number equal to six if and only if it contains a complete graph of order six, and it is 5-colorable, otherwise. As a consequence of our proof, we derive that every Eulerian triangulation of the Klein bottle with facewidth at least four is 5-colorable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 244  شماره 

صفحات  -

تاریخ انتشار 2002